3.933 \(\int \frac{(2+3 x) (1+4 x)^m}{1-5 x+3 x^2} \, dx\)

Optimal. Leaf size=129 \[ -\frac{3 \left (13-9 \sqrt{13}\right ) (4 x+1)^{m+1} \, _2F_1\left (1,m+1;m+2;\frac{3 (4 x+1)}{13-2 \sqrt{13}}\right )}{26 \left (13-2 \sqrt{13}\right ) (m+1)}-\frac{3 \left (13+9 \sqrt{13}\right ) (4 x+1)^{m+1} \, _2F_1\left (1,m+1;m+2;\frac{3 (4 x+1)}{13+2 \sqrt{13}}\right )}{26 \left (13+2 \sqrt{13}\right ) (m+1)} \]

[Out]

(-3*(13 - 9*Sqrt[13])*(1 + 4*x)^(1 + m)*Hypergeometric2F1[1, 1 + m, 2 + m, (3*(1 + 4*x))/(13 - 2*Sqrt[13])])/(
26*(13 - 2*Sqrt[13])*(1 + m)) - (3*(13 + 9*Sqrt[13])*(1 + 4*x)^(1 + m)*Hypergeometric2F1[1, 1 + m, 2 + m, (3*(
1 + 4*x))/(13 + 2*Sqrt[13])])/(26*(13 + 2*Sqrt[13])*(1 + m))

________________________________________________________________________________________

Rubi [A]  time = 0.108537, antiderivative size = 129, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08, Rules used = {830, 68} \[ -\frac{3 \left (13-9 \sqrt{13}\right ) (4 x+1)^{m+1} \, _2F_1\left (1,m+1;m+2;\frac{3 (4 x+1)}{13-2 \sqrt{13}}\right )}{26 \left (13-2 \sqrt{13}\right ) (m+1)}-\frac{3 \left (13+9 \sqrt{13}\right ) (4 x+1)^{m+1} \, _2F_1\left (1,m+1;m+2;\frac{3 (4 x+1)}{13+2 \sqrt{13}}\right )}{26 \left (13+2 \sqrt{13}\right ) (m+1)} \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x)*(1 + 4*x)^m)/(1 - 5*x + 3*x^2),x]

[Out]

(-3*(13 - 9*Sqrt[13])*(1 + 4*x)^(1 + m)*Hypergeometric2F1[1, 1 + m, 2 + m, (3*(1 + 4*x))/(13 - 2*Sqrt[13])])/(
26*(13 - 2*Sqrt[13])*(1 + m)) - (3*(13 + 9*Sqrt[13])*(1 + 4*x)^(1 + m)*Hypergeometric2F1[1, 1 + m, 2 + m, (3*(
1 + 4*x))/(13 + 2*Sqrt[13])])/(26*(13 + 2*Sqrt[13])*(1 + m))

Rule 830

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x)^m, (f + g*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] &&  !RationalQ[m]

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rubi steps

\begin{align*} \int \frac{(2+3 x) (1+4 x)^m}{1-5 x+3 x^2} \, dx &=\int \left (\frac{\left (3+\frac{27}{\sqrt{13}}\right ) (1+4 x)^m}{-5-\sqrt{13}+6 x}+\frac{\left (3-\frac{27}{\sqrt{13}}\right ) (1+4 x)^m}{-5+\sqrt{13}+6 x}\right ) \, dx\\ &=\frac{1}{13} \left (3 \left (13-9 \sqrt{13}\right )\right ) \int \frac{(1+4 x)^m}{-5+\sqrt{13}+6 x} \, dx+\frac{1}{13} \left (3 \left (13+9 \sqrt{13}\right )\right ) \int \frac{(1+4 x)^m}{-5-\sqrt{13}+6 x} \, dx\\ &=-\frac{3 \left (13-9 \sqrt{13}\right ) (1+4 x)^{1+m} \, _2F_1\left (1,1+m;2+m;\frac{3 (1+4 x)}{13-2 \sqrt{13}}\right )}{26 \left (13-2 \sqrt{13}\right ) (1+m)}-\frac{3 \left (13+9 \sqrt{13}\right ) (1+4 x)^{1+m} \, _2F_1\left (1,1+m;2+m;\frac{3 (1+4 x)}{13+2 \sqrt{13}}\right )}{26 \left (13+2 \sqrt{13}\right ) (1+m)}\\ \end{align*}

Mathematica [A]  time = 0.0808766, size = 89, normalized size = 0.69 \[ \frac{(4 x+1)^{m+1} \left (\left (5+7 \sqrt{13}\right ) \, _2F_1\left (1,m+1;m+2;\frac{12 x+3}{13-2 \sqrt{13}}\right )+\left (5-7 \sqrt{13}\right ) \, _2F_1\left (1,m+1;m+2;\frac{12 x+3}{13+2 \sqrt{13}}\right )\right )}{78 (m+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x)*(1 + 4*x)^m)/(1 - 5*x + 3*x^2),x]

[Out]

((1 + 4*x)^(1 + m)*((5 + 7*Sqrt[13])*Hypergeometric2F1[1, 1 + m, 2 + m, (3 + 12*x)/(13 - 2*Sqrt[13])] + (5 - 7
*Sqrt[13])*Hypergeometric2F1[1, 1 + m, 2 + m, (3 + 12*x)/(13 + 2*Sqrt[13])]))/(78*(1 + m))

________________________________________________________________________________________

Maple [F]  time = 1.129, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( 4\,x+1 \right ) ^{m} \left ( 2+3\,x \right ) }{3\,{x}^{2}-5\,x+1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)*(4*x+1)^m/(3*x^2-5*x+1),x)

[Out]

int((2+3*x)*(4*x+1)^m/(3*x^2-5*x+1),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (4 \, x + 1\right )}^{m}{\left (3 \, x + 2\right )}}{3 \, x^{2} - 5 \, x + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)*(1+4*x)^m/(3*x^2-5*x+1),x, algorithm="maxima")

[Out]

integrate((4*x + 1)^m*(3*x + 2)/(3*x^2 - 5*x + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (4 \, x + 1\right )}^{m}{\left (3 \, x + 2\right )}}{3 \, x^{2} - 5 \, x + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)*(1+4*x)^m/(3*x^2-5*x+1),x, algorithm="fricas")

[Out]

integral((4*x + 1)^m*(3*x + 2)/(3*x^2 - 5*x + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (3 x + 2\right ) \left (4 x + 1\right )^{m}}{3 x^{2} - 5 x + 1}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)*(1+4*x)**m/(3*x**2-5*x+1),x)

[Out]

Integral((3*x + 2)*(4*x + 1)**m/(3*x**2 - 5*x + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (4 \, x + 1\right )}^{m}{\left (3 \, x + 2\right )}}{3 \, x^{2} - 5 \, x + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)*(1+4*x)^m/(3*x^2-5*x+1),x, algorithm="giac")

[Out]

integrate((4*x + 1)^m*(3*x + 2)/(3*x^2 - 5*x + 1), x)